·学院主页 院长信箱 书记信箱 联系我们 FAQ 本科 | 硕士 | 博士 | MBA | EMBA | MPAcc | EDP
English Version
【学术通知】宾夕法尼亚州立大学Bernard James Jansen教授:Social Media Analytics for the Automatic Generation of Imaginary People in Order to Understand Real People
更多
发布日期:2019-04-12 点击数:

喻园管理论坛2019年第33期(总第484期)

演讲主题:Social Media Analytics for the Automatic Generation of Imaginary People in Order to Understand Real People

主 讲 人:Bernard James Jansen, 宾夕法尼亚州立大学教授,卡塔尔计算研究所社会计算中心的首席科学家

主 持 人:杨彦武教授,工商管理系

活动时间:4月17日(周三)上午9:30--11:00

活动地点:管理学院126教室

主讲人简介:

Bernard James Jansen,宾夕法尼亚州立大学信息科学与技术学院教授,卡塔尔计算研究所社会计算中心的首席科学家,皮尤互联网和美国生活项目研究中心(Pew Research Center)高级研究员。Jansen教授是享誉全球的学者,在信息检索、搜索广告、社交媒体广告、运营管理、市场营销、金融等领域都有卓越学术成就。他发表了300多篇学术论文,总引用19,200多次,H-index为59。Jansen教授是8个国际知名期刊的编委员会成员,Internet Research前主编,现任Information Processing & Management 主编。

活动简介:

This is a discussion of an on-going research project by a team of researchers to develop a methodology to automate create imaginary people, referred to as personas, by processing complex behavioral and demographic data of social media audiences. Using social media accounts containing more than tens of million interactions by people from a diverse set of countries engaging with thousands of online posts, we demonstrate that our methodology has several novel accomplishments, including (a) identifying distinct user behavioral segments based on the user content consumption patterns; (b) identifying impactful demographics groupings; and (c) creating rich persona descriptions by automatically adding pertinent attributes, such as names, photos, and personal characteristics. We have validated our approach by implementing the methodology into an actual working system and evaluated it via quantitative methods by examining the accuracy of predicting content preference of personas, the stability of the personas over time, and the generalizability of the method via applying to multiple datasets. Research findings show the approach can develop rich personas representing the behavior and demographics of real audiences using privacy-preserving aggregated online social media data from major online platforms.

信息资源
友情链接